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1. INTRODUCTION AND SUMMARY 

This report  is  an addendum to the four-volume interim report  

(Reference I). 

the study. 

provide navigation information to system users .  

lites have some communications capability permitting the NAVSTAR 

ground-tracking network to relay satellite tracking data f rom remote 

sites t o  a central  point. Because of the desirability of adding traffic 

control capability to the satellites , the communication capability has 

been expanded to provide fo r  the relay of digital data between system 

users and a ground station in addition to relay of the satellite tracking 

data. The subject of this addendum is this expanded capability. 

Together the two reports constitute a final report  for 

The NAVSTAR satellites described in the interim report 
In addition, the satel-  

The added data links provide full duplex communications between 

There- system users  and a ground station and will operate a t  L band. 

fore ,  the data links will be able to use the same antennas on the satellite 

and user proposed for navigation. * meet the estimated surveillance 

system for the 1975 time period in the North Atlantic ocean area  based 

on a f o u r  -satellite network and ear th  coverage satellite antennas. Four 
satellites a r e  required to  obtain a full three -dimensional (latitude, longi- 
tude, altitude) position fix. 

The links will have the capacity to 

requirements of an a i r  traffic control 

Each aircraf t  in the traffic control system will periodically t rans-  

mit the latest  received NAVSTAR range (difference) data to a ground 

station. A ground-based computer will determine aircraf t  positions 

from the relayed data and the ground station can then relay to the air- 

craft  for pilot display, instructions based on the position information as 

well as the actual position itself. This latter mode of operation co r re s -  

ponds to Configuration B of the NAVSTAR user  equipment (Reference 1, 

Volume IV).  As an upper bound on the data requirements, supersonic 
a i rcraf t  (the SST) a r e  assumed to transmit data reports to the ground 

* Defined here  to mean position determination of a i rcraf t  by a traffic 
control ground station independent of pilot reports .  



station every 20 seconds. 

transmit data reports every 80 seconds. 

craft  population in 1975 is estimated to contain 20 supersonic and 170 

subsonic a i rcraf t .  

All  other a i rcraf t  (subsonic) a r e  assumed to 

The peak North Atlantic air- 

An increase in the data ra tes  beyond the surveillance requirements 

can be readily achieved by increasing the satellite antenna gain by narrow- 
ing the beamwidth from ear th  coverage to  North Atlantic coverage. 

ra tes  up to five times greater can be accommodated. 

disadvantage is the limitation of NAVSTAR service to one area o r  a 

greater number of satellites to obtain worldwide coverage. The trade- 

offs involved in increasing the satellite antenna gain need further study 

before a decision can be made a s  to the best  approach. 

A complete aeronautical service capability, including both digital 

Data  

The concomitant 

and voice transmission, is not considered here  for two reasons. 

it was desired to operate the links with the simple low-cost u se r  naviga- 

tion antenna rather than the heavy and costly steerable a r r ays  required 

for voice and high data rate communications. 

maintain the present satellite size. 

surveillance function increases the satellite weight by 104 pounds at 

launch, but the satellite is still  within the capability of the Intelsat I11 

structure and a Thor-Delta launch vehicle. A full capability aeronautical 

satellite to meet  the total requirements in the North Atlantic would re- 

quire an Atlas  /Agena class  of launch vehicle. 

F i r s t ,  

Second, it was desired to 

Adding the digital data links for  the 

In this addendum, the following information is presented. Section 2 
describes the traffic control links and the attendant communications 

equipment required for the ground station, system use r s  (assumed to  be 

aircraf t )  and the satellites. Estimated data requirements for surveil- 

lance and link power budgets are also given. 
satellite tracking data relay function, which has been modified because 

of the added traffic control links. 

Volume I V ,  of the interim report .  Section 4 presents the impact on the 

Section 3 discusses the 

This section replaces Section 4 .9 ,  

satellite of adding the increased 

Finally, Section 5 estimates the 

traffic control cummunications , 

communications for  traffic control. 

user  hardware costs to implement the 

assuming a production run of 200 units. 
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2 .  TRAFFIC CONTROL DATA LINKS 

The traffic control data links which have been added to the NAVSTAR 

system permit low rate digital data communications between appropriately 

equipped system users  and ground stations via transponders on the satel- 

lites. 

station-to-aircraft transmissions and the other for  user-to-ground-station 

transmissions. Thus full duplex communications between use r s  and the 

ground station a r e  provided. Half -duplex communications (one link per 

satellite) reduces system efficiency by requiring the ground station and 

user transmissions to be synchronized. Guard t imes between t ransmis-  

sions to accommodate the propagation delay uncertainties between use r s  

and the satellites limit the utilization of such a half-duplex link. 

these reasons full duplex communications a r e  more  desirable. 

T w o  RF links per satellite will be available, one link fo r  ground- 

F o r  

The data links will operate at L band so that the L-band despun 

navigation antenna on the satellite can also be used for  the data relay. 

In addition, the low-gain user  antenna recommended for navigation can 

also be used for  the transmission and reception of the traffic control data. 

Therefore, no additional satellite o r  user antennas a r e  required for  the 

traffic control data function. The R F  c a r r i e r s  will be frequency division 

multiplexed with the other L-band NAVSTAR c a r r i e r s ,  i . e . ,  the naviga- 

tion (ranging) signal f rom the satellites to  users  and the satellite tracking 

data relayed by the satellite f rom remote ground tracking sites to  a cen- 

tral station. 

the satellites in the NAVSTAR network and a re  consequently at the same 

c a r r i e r  frequency for each satellite. However, the traffic control data 

links will be available continuously from each satellite 

satellite transponder will operate at a different set of frequencies, 

assigned in 500-kHz steps. Of course,  in a worldwide system, satellites 

which can never be simultaneously in view can operate on the same fre- 

quencies. A typical frequency plan for a North Atlantic network of four 

satellites is shown in Table 1. 

The navigation signals are time division multiplexed between 

Therefore, each 

3 



Table 1. Satellite Frequency Plan 

RF Frequency 
(MHz) 

Link 

Satellite 1 2 3 4 
Transmitted Car r i e r s  

ATC data to a i rcraf t  1552.0 1551.5 1551.0 1550.5 

ATC data to ground station 1547.0 1546.5 1546.0 1545.5 

1542.0 1541.5 1541.0 1540.5 Satellite tracking data 

Navigation signal 1567.0 1567.0 1567.0 1567.0 

* 

Received Carr ie  r s 

ATC data from ground station 1660.0 1659.5 1659.0 1658.5 

ATC data from aircraf t  1655.0 1654.5 1654.0 1653.5 

1650.0 1649.5 1649.0 1648.5 Satellite tracking data 
* 

.L -0 

All  satellites need not be equipped for this function (see Section 3 ) .  

2 . 1  DATA REQUIREMENTS 

The data rates f o r  the links will have the capacity to handle the su r -  

veillance function of an air traffic control system for  the North Atlantic 

ocean a rea  in 1975. Data rates  of 200 bi ts /sec f rom aircraf t  to  ground 

station and 64 bits /sec from ground station to  aircraft per satellite can 

be implemented without major change to  the satellite size and can be 

handled by the satellite ear th  coverage and low gain user  navigation 

antennas. An increase in data ra tes  for expanded capacity would require 

either an increase in satellite or  user  antenna gain o r  a major change in 

satellite size to permit increased solar a r r a y  power. Since it was de- 

sired to maintain the Intelsat I11 modification with a Thor-Delta launch 

vehicle for  the NAVSTAR satellites and to  maintain the simple nondirec- 

tive user antenna, increased data ra tes  by either of these methods was 

not considered. However, the data rates can be readily increased by 

narrowing the satellite antenna beam from ear th  coverage to  North Atlantic 

coverage. Up to 7 db increase in satellite ERP can be obtained by this 

method providing up to a five times increase in data ra te .  

tage is the narrower coverage in NAVSTAR service provided by each 

satellite. 

The disadvan- 

4 



The data requirements for surveillance will depend on the maximum 

number of a i rcraf t  in the North Atlantic at any one time. An average of 

the existing forecasts on traffic volume (Reference 2)  indicate that the 

peak traffic will be approximately 190 aircraf t ,  170 subsonic, and 20 

supersonic. The surveillance requirements are based on this estimate.  

In order  to bound the communication requirement, all 190 a i rc raf t  

in the North Atlantic a re  assumed to be equipped to relay NAVSTAR data. 

Each aircraf t  transmits the data reports to  the ground station either on 

request f rom the ground station or  automatically in assigned time slots ,  

The information and corresponding number of bits in each data report  is 

shown in Table 2 .  The number of bits shown represent an upper bound 

Table 2 .  Automatic Data Report, Upper Bound on 
Information Bits Required 

Information Decimal Digits Binary Digits 

Aircraft identification 6 

NAVSTAR data 

Satellite identification 1 /satellite 

Range 6 /satellite 

Range rate 4 /satellite 

Time 7 

Altitude 4 

Total 

20 

16" 

80* 

48" 
22 

14 - 
200 bits 

* 
The number of bits represents data from four satellites. 

on the requirements and allow determination of position to a resolution of 

10 feet and velocity 

for surveillance. However, since NAVSTAR can provide accuracies to 

this order  of magnitude, the maximum resolution is assumed in order to 

"sc$ 
to 1 f t / sec ,  considerably better than will be required 

** Velocity information may not be required but is included since the 
system has this capability. Aircraft  not equipped to  measure velocity 
data f rom c a r r i e r  doppler will not transmit this information. 
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place an upper bound on the data requirements. 

NAVSTAR range (difference) data from four satellites is included plus 

time to the nearest  millisecond referenced to one satellite transmission 

time. Although altitude information is contained in the NAVSTAR data, 

In the data report ,  the 

altitude from the altimeter is also assumed to be transmitted. 

The maximum data rate required for  the surveillance of all 190 air- 

craf t  i s  estimated a s  follows: The 20 supersonic a i racraf t  are assumed 

to transmit reports not more often than every 20 seconds and the 170 sub- 

sonic a i rcraf t  every 80 seconds. 

indicated is: 

200 bits x 20 aircraf t  
20 sec 

Therefore, the maximum data rate 

200 bits X 170 aircraf t  
80 sec t 

for a total of 625 b i t s / sec .  

between aircraf t  transmissions,  a 20 per cent greater  data rate is 

assumed. 

station for surveillance will be approximately 750 bits /sec.  Since each 

satellite can relay 200 bits /sec,  a four-satellite network can handle 800 

bi ts /sec and maximum surveillance requirements can be met by this 

network. 

To accommodate frame sync and guard time 

Therefore, the maximum data rate f rom aircraf t  to  the ground 

The data rate from the ground station to a i rcraf t  is derived as fol- 

lows: If the ground station requests surveillance information from air- 
craf t  on a roll  call basis by transmitting aircraf t  identifications sequenti- 

ally, the necessary data rate is: 

20 bits X 20 aircraf t  20 bits X 170 aircraf t  = 6 3  bits/sec 20 sec 80 sec 

If the a i rcraf t  report  automatically in assigned time slots,  these ground 

station transmissions can of course be eliminated. 

An additional capability of 147 bits /sec (after providing 20 per cent 

fo r  sync, guard time) is available on the ground-station-to-aircraft link 

based on the four-satellite network and 64 bits /sec relay capacity per 

satellite. 

fic control instructions a s  required and statements of position data for  

straying aircraf t  and for a i rcraf t  which do not contain NAVSTAR naviga- 

tion computers. 
6 
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The surveillance sampling rates upon which the preceding data 

rates were based a re  the results of studies by TRW under NASA/ERC 

contractNAS 12-595 for which the final report  has not been prepared as 
of this writing, If lower sampling rates  prove feasible, the extra  data 

rate capacity can be used for added traffic control functions o r  for sys- 

tem growth. Higher sampling rates a r e  felt to  be unlikely. 

2 . 2  SATELLITE ACCESS METHODS 

Access to a particular satellite would be assigned to use r s  on a 

geographic basis.  

would be divided into four zones. 

assigned a particular zone on the basis of best  orbit coverage. A l l  users  

in a given zone would tune their transceivers to the pair of frequencies 

assigned to the satellite covering that zone. Upon entering a new zone, 

users  would simply switch their frequencies to the next satellite. 

Fo r  example, in the North Atlantic network, the a rea  

Each of the four satellites would be 

Access to a satellite by all users  in a given zone can be solved by 

two different approaches. 

upon receipt of ground station requests (the roll-call method). 

ground station can address a group of users  in any sequence and frequency 

of contact desired.  

slot. The time information supplied as part  of the navigation signal t rans-  

missions can be used fo r  the time synchronization required between use r s .  

Assignments of time slots to use r s  as they enter new zones can be made 

by ground station transmissions. 

In the first approach, users  transmit data only 

The 

In the second approach, each user  is assigned a time 

Of the two approaches the first appears to be the more attractive 

since it allows for more flexible operation of the traffic control network. 

Another possibility would use a combination of the two approaches, U s e r s  
would ordinarily broadcast in their assigned time slots.  

ground station could override this system by sending appropriate instruc - 
tions to  all users .  The instructions could make available more  time slots 
(more frequent ground station contact) to certain u s e r s  and fewer time 

slots to  other users  o r  could change the mode of operation f rom time slots 

However, the 

to  ground station requests. 

7 



2 . 3  MODULATION-DEMODULATION TECHNIQUES 

The modulation-demodulation techniques for the traffic control 

function have been designed to  provide minimum complexity of user  

equipment within the constraints of limited satellite R F  power. 

digital techniques were considered using both coherent and noncoherent 

detection. Coherent detection while more efficient in the use of satellite 

R F  power is unattractive f rom the standpoint of requiring the receiver to 

acquire the phase of the arriving carrier. The acquisition takes a por- 

tion of the transmission time thus reducing data transmission capacity. 

However, at L band, doppler shift (especially with the supersonic air- 

craft) and system oscillator frequency uncertainties become significant 

in that arriving signals at the u s e r ,  satellite, and ground station have 

relatively large frequency uncertainties (12 to 20 kHz) compared to the 

modulation bandwidths of the transmitted data ra tes .  

coherent detection will suffer significant degradation in performance 

since the receiver predetection bandwidth must be made much la rger  

than the modulation bandwidth unless the receiver employs some form 

of automatic frequency control. Because of the large uncertainty in fre- 

quency, a wideband AFC loop such as used in home broadcast FM recei-  

vers  will not work well because of the thresholding effect in the loop dis- 

criminator. 

o r  phase lock loop) is required which will acquire and track a c a r r i e r  o r  

pilot tone. 

Many 

Consequently, non- 

Therefore, a narrowband tracking loop (either a frequency 

The ground station receiver will not require automatic frequency 

control since it can compensate for receiver performance degradation by 

increased antenna gain. In addition, since the ground station receives 

signals in rapid sequence from many different u se r s ,  acquisition of a 

pilot tone for each received signal would reduce the t ime available for  

data reception. 

U s e r s  present a different case.  Degradation in receiver perform- 
ance cannot be tolerated since the user  antenna gain is limited to low 

values. 

loop to remove the frequency uncertainty in the arriving signal. 

quently the ground station will continuously emit a ca r r i e r  o r  pilot tone 

Therefore, the user  receiver will require a narrowband tracking 

Conse- 
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and u s e r s  will acquire the c a r r i e r  upon entering a traffic control zone 

and stay locked to this c a r r i e r  while remaining in the zone. 

In view of these considerations, the following modulation techniques 

a re  chosen for the data transmissions. Users  t ransmit  frequency shift 

keyed data (FSK) with two L-band frequencies spaced 80 kHz apar t  and 

keyed at  a rate of 200 t imes per second (200 bi ts /sec) .  

tion demodulator detects the tones with two wideband f i l ters  and envelope 

detectors centered on the nominal tone frequencies. 

signal-to-noise ratio with the wideband f i l ters  can be tolerated because 

of the large ground antenna gain. 

The ground sta- 

The degradation in 

The ground station transmits its data by FSK of two audio tones 

(at 64 bi ts /sec)  which phase modulate the L-band c a r r i e r .  

tion index will be small  enough to  provide a c a r r i e r  component for the 

user to acquire and t rack by a phase lock loop. 

tains lock to  the c a r r i e r ,  thus removing the arriving frequency uncer- 

tainty. The audio tones recovered by the phase lock loop a r e  detected 

by fi l ters to recover the data. 

narrowband resulting in near  optimum detection for  FSK. 

fi l ters for FSK a r e  bandpass integrate and dump f i l ters  (the matched 

fi l ter) .  Ordinary bandpass f i l ters ,  such a s  RLC filters, with bandwidths 

approximating the bit rate are near optimum in performance (about 1 to  

2 db degradation from optimum) and much simpler to implement. 

Reference 3. 

The modula- 

The user  receiver main- 

However, the tone filters can now be 

The optimum 

See 

2.3.1 User-to-Ground Station Link 

A simplified block diagram of the ground station demodulator i s  

shown in Figure 1. 

One filter is tuned to  one of the data tones (the "mark" fi l ter)  and the 

other is tuned to the other data tone (the "space" filter). The signals out 
of the two filters a r e  envelope detected and a mark-space decision on the 

data is made every bit time according to which envelope detector output 

voltage is la rger .  Before a decision is made, the outputs f rom the two 

envelope detectors a r e  differenced to form a plus-minus level signal 

(contaminated by noise) and filtered by the optimum filter f o r  this signal 

(the integrate and dump fil ter) .  The integration period extends over one 

The demodulator contains a pair of bandpass fi l ters.  

9 



BASEBAND 
INPUT 
FROM 

RECEIVER 

r-- -- - - ----- - -1 
DATA OUT 

bps 

Figure 1. Ground Station Data  Demodulator 

bit time, at the end of which the filter output polarity is sampled by the 

decision circuit and then dumped to  prepare for the next bit. 

of the decision circuit constitutes the binary traffic control data received 

by the ground station. 

operations require bit synchronization, which is provided by the bit sync 

loop operating on the bit transitions. It will be necessary for  each mes-  

sage to contain some bit transitions at the s ta r t  for the purpose of syn- 

chronizing the loop and for the message to contain sufficient data t ransi-  

tions to maintain synchronization. 

The output 

The decision-sampling and integrate -and-dump 

The data demodulator would be near  optimum in performance if the 

bandpass filters had noise bandwidths about equal to  the data ra te .  

fortunately, the frequency uncertainty in the R F  link is much larger  than 

the transmitted data rate and the fi l ter  bandwidths must  be expanded to 

accommodate the total expected frequency uncertainty. 

tainty will depend on the system oscillator stabilities and the doppler 

shift r e  sulting from the relative velocity of the satellite and the t rans  - 
mitting user .  

synchronous altitude dopple r is very small; the frequency translation 

e r r o r  in the transponder can be made negligible by proper design. A 

Un- 

The total uncer - 

The satellite will make a negligible contribution since at 

10 



maximum frequency uncertainty of about 17 kHz is estimated based on 

the following assumptions : 

1) The maximum user velocity will be 3000 f t /sec corresponding 
to  the SST aircraf t .  This corresponds to about *3 ppm maxi- 
mum doppler shift of the c a r r i e r  frequency. 

2) The user  transmitter contains an oscillator with a stability of 
at least  *2 ppm. 

3 )  The ground station local oscillator in the receiver will have a 
stability of better than * O .  1 ppm. 

The satellite transponder introduces negligible e r r o r  in fre- 
quency translation and has near  zero doppler effect compared 
to the maximum user velocity of 3000 f t / sec .  

4)  

Therefore, assuming worst  case linear summation of the individual fre - 
quency e r r o r s ,  the maximum frequency uncertainty for the link is k5.1 

ppm. At  the maximum ca r r i e r  frequency of 1660 MHz, this value cor-  

responds to *8.5 o r  17 kHz total uncertainty in c a r r i e r  frequency. 

Since the ground station receiver is noncoherent and simply hetero- 

dynes the ca r r i e r  frequency to video baseband, this frequency uncertainty 

also appears at the input to  the demodulator. Without automatic frequency 

control, the FSK fil ters thus have to have passbands at least  17 kHz wide. 

This passband contrasts with the bandwidth necessary to pass the FSK 

modulation of only about 200 Hz. 

a r e  used to accommodate the 17 kHz uncertainty and the performance 

degradation with respect to  optimum fi l ter ing is accepted. 

tones transmitted by the user  are spaced *40 kHz about the nominal 

L-band c a r r i e r  frequency assigned to the link. 

80 kHz apart ,  which simplifies the filtering requirements in the ground 

station demodulator. 

40 and 120 kHz, a s  illustrated in Figure 1. 

Tone filter noise bandwidths of 20 kHz 

The two FSK 

Thus the tones a re  spaced 

The tone filters in the demodulator a r e  centered at 

E r r o r  rate a s  a function of the signal-to-noise ratio in each tone 

filter has been calculatedby Glenn (Reference 4) for  different values of 

the ratio of the filter noise bandwidth to  the data rate.  This ratio is 

100 in the present case (20 kHz and 200 bits/sec).  For  a desired bit 
e r r o r  rate of 

noise bandwidth i s ,  according to Glenn, about - 1.0 db . 
the required signal-to-noise ratio in the 20-kHz 

The optimum 

1 1  



noncoherent F S K  demodulator has a probability 

of 

of a bit e r r o r  (Reference 5) 

where E/No = energy per bit-to-noise spectral  density. Fo r  Pe of 

E / N o  is 13.4 db for optimum demodulation and 19.0 db for the 

wideband f i l ters .  Therefore the degradation in performance with the 

wideband fi l ters i s  slightly less  than 6 . 0  db. 

Other noncoherent techniques plus differentially coherent PSK were 

also considered for this link but each was ruled out f o r  reasons of per- 

formance o r  ease of implementation or  both. 

lation-demodulation technique described here appears to be the best  

choice for the L-band traffic control data links from system use r s  to the 

ground station via relay from the NAVSTAR satellites. 

The noncoherent F S K  modu- 

2 . 3 . 2  Ground-Station-to-User Link 

As  discussed previously, the users  in this link will have phase lock 

receivers which t rack the c a r r i e r  component of the ground station t rans-  

missions. Either a frequency o r  phase tracking loop can be used in this 

application. There appears to be no particular advantage to either tech- 

nique; both have about the same performance and both require a c a r r i e r  

signal to acquire and t rack.  

form and implementation. 

tradeoffs involved between the two schemes, a phase lock loop has been 

chosen on the basis of greater experience with this type of receiver .  

The main difference is in the modulation 

Without the benefit of further study on the 

Carr ie r  tracking is necessary to remove the large uncertainty in 

the frequency of the received c a r r i e r .  

is about the same as fo r  the user-to-ground station link (17 kHz) since 

similar assumptions on oscillator stabilities and doppler shifts apply. 

Therefore, if the frequency uncertainty is not removed, the ratio of the 

required filter detection bandwidths (20 kHz) to the data rate for this 

link (64 bits /sec)  is 3 12.5. 

from optimum detection is calculated to be about 9 db. 

intolerable for the limited gain available in the link. 

The magnitude of this uncertainty 

From Glenn (Reference 4), the degradation 

This is clearly 
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The ca r r i e r  can be acquired manually. To aid in acquisition the 

carrier loop has two loop bandwidths selectable by a switch with acquisi- 

tion occurring in the wideband position (150 Hz, two-sided). After acqui- 

sition, the loop is switched to the narrowband position (50 Hz) to improve 

the loop signal-to-noise ratio. 

is desirable to prevent c a r r i e r  noise j i t ter  in the loop from degrading 

the data demodulator performance. 

A higher S / N  in the loop during tracking 

The data modulation is contained in two audio tones ("mark" and 

The output of the phase - "space") which phase modulate the c a r r i e r .  

lock receiver contains the two keyed tones, only one of which is present 

at any given time (FSK) .  

the phase-lock receiver (see Figure 2 )  has  the same form as the nonco- 

herent FSK demodulator in the ground station. 

is that near-optimum fi l ter ing of the tones is possible since the ca r r i e r  

loop has removed the frequency uncertainty in the L-band c a r r i e r .  

Consequently, the data demodulator following 

The important difference 

BASEBAND 
INPUT FROM 

RECEIVER 
PHASE LOCK 

LOOP 

INTEGRATE AND 

Figure 2 .  U s e r ' s  Data Demodulator 

The bandwidth of the "mark" and "space" filters is just  wide enough 

Tone frequencies of 256 and to pass the modulated tones, o r  about 65 Hz. 

512 Hz were selected to ease the narrowband filter designs required. If 

13 



these frequencies turn out to be too close to the c a r r i e r ,  causing diffi- 

culty in ca r r i e r  acquisition (locking on the tone sidebands) , the tones can 

be transmitted at higher frequencies and then heterodyned to the selected 

frequencies prior to filtering. 

Besides narrowband filtering of the tones, the other major differ- 

ence from the ground station demodulator is the method by which bit sync 
is derived. 

loop operating on the data transitions. 

the user demodulator, the ground station transmits bit sync information 

with the data. 

bined FSK audio tone signal with a sinusoidal tone at 3 2  Hz (half the bit 

rate).  The tone filters a r e  widened slightly to  accommodate this addi- 

tional modulation. 

detectors (each output containing one-half cycle of the sync tone) are 

summed and filtered by a narrowband filter centered at 32  Hz. 

crossing detector provides the sync timing. 

employed successfully in the Air Force ' s  SGLS command decoder. 

In the ground station, bit sync is obtained from a bit sync 

In order to simplify bit sync in 

Bit sync is transmitted by amplitude modulating the com- 

To recover the sync, the outputs of the envelope 

A zero 

This technique has  been 

The use of ordinary bandpass fi l ters , such as an RLC filter in place 

of matched filters , will degrade performance about 1 .0  to  2 .0  db (see 

Reference 3 ) .  

increase in signal power by the factor (1 t m ) /2 ,  where m is the AM 

index of the sync tone. 

provide good bit sync timing accuracy (less than 3 per cent of the bit 

time) providing the bit sync filter has  a bandwidth of about one-tenth the 

data ra te ,  o r  6 .4  Hz. 

only 0 .5  db. 

density or  equivalently the signal-to-noise ratio in a bandwidth equal to 

the bit rate will therefore be 15 to 16 db for Pe = 10 

In addition, the bit sync amplitude modulation requires an 
2 

Reference 6 shows that m = 0 .5  is sufficient to 

Thus bit sync requires an increase in power of 

The required ratio of total energy per bit-to-noise spectral  

-5 . 
Since some power must  remain in the c a r r i e r  for the acquisition 

and tracking function, the modulation index of the data tones phase modu- 

lating the ca r r i e r  must be chosen to  optimize the division of power between 

the ca r r i e r  and the tones. 

(Reference 6 )  to be 

The optimum division of power has been shown 
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where 0 = ca r r i e r  modulation index of tones (peak radians) 

= ratio of power required in data tones to power 
pd/pc required in carrier 

The value for the power ratio can be computed f rom the following require- 

ments. 
bandwidth, and the ca r r i e r  loop requires 6 db signal-to-noise ratio in a 

150 -Hz bandwidth for acquisition. 

value of 4.27 for Pd/Pc. 

radians. 

the data power [ Z J ,  ( P ) ] .  
quency uncertainty were not removed by ca r r i e r  tracking. 

The data tones require 16 db signal-to-noise ratio in a 64-Hz 

Straightforward calculation gives a 

The optimum modulation index is thus 1.7 
.I* *P 

The power required in the ca r r i e r  results in a 1.8 db loss in 
2 This loss contrasts with a 9-db loss i f  f r e -  

2.4 COMMUNICATIONS EQUIPMENT 

The communications equipment required for the traffic control data 

relay between system users  and a ground station a r e  described to the 

block diagram level in this section, including the ground station, u se r s ,  

and the satellite transponder. Data processing equipment such as data 

storage and display of the traffic control data is not discussed but simply 

shown as a data input-output black box. 

2.4.1 Ground Station 

The main elements of the ground station transceiver (Figure 3 )  are 

a modulator and 100-watt amplifier for transmitting traffic control data 

to users  plus a double coqversion receiver and F S K  demodulator for re- 

ceiving traffic control data from users .  A 26-db gain L-band antenna 

(5-fOOt dish) and associated diplexer a re  used for  transmission and r e -  

ception of the data signals. The equipment is for  use with one NAVSTAR 

? Carr ie r  tracking requires slightly less  power in the c a r r i e r  than 
acquisition (10 db signal-to-noise ratio in a 50-Hz loop noise band- 
width) and if tracking only was considered the optimum modulation 
index would be 1 e 76 radians. 
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Figure 3 .  Ground Station Traffic Control Data Transceiver 

satellite or traffic control zone. Duplicate equipment would be provided 

for each zone assigned to a station. 

The 5-fOOt antenna has a beamwidth at the 3-db points of about 

8 degrees.  

not be necessary and elevation tracking can be crude. 

5-fOOt antennas a r e  low cost and provide no problems for  the simple 

tracking required. 

Therefore, azimuth tracking of the satellites will probably 

In any case ,  the 

The transmitter portion contains two data tone oscillators at 256 

and 512 Hz which a re  selected for transmission through an analog gate by 

the binary data stream to  be transmitted. 

tuning fork reference or  by dividing down a high frequency crystal  oscil- 

lator.  The gate output, consisting of the FSK data,  is 50 per cent ampli- 

tude modulated by a 32-Hz sinusoidal timing waveform representing the 

sync information for the 64 bi ts /sec data s t ream. The composite signal 

phase modulates the output of a frequency synthesizer driven by a stable 

crystal  oscillator (*O . 1 ppm). The phase -modulated signal is multiplied 

to L band and amplified to 100 watts output power by a TWT amplifier. The 

amplifier output is fed to  the diplexer and antenna for transmission to a 

The tones are obtained by a 
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satellite. 

with a particular satellite by selecting the proper frequency output f rom 

the synthesizer. 

The ground station can select  its t ransmit ter  frequency to work 

The receiving portion consists of a double conversion superhetero- 

dyne receiver preceded by an L-band transistor preamplifier with 5-db 

noise figure. 

tones at frequencies of 40 and 120 kHz and forms the input to  the FSK 

demodulator (see Figure 1). 

rived from the frequency synthesizer in the transmitter or  can be separate 

units. It is important for the f i rs t  local oscillator to have a stability of at 
least  *O. 1 ppm, although the second local oscillator can have a stability 

of *5 ppm since it does not contribute significantly to the frequency e r r o r  

in the tones. 

large enough to pass the two data tones. 

and a re  modulated with narrowband information (200 bi ts /sec data) an IF 

bandwidth of 100 kHz should be adequate. The receiver can be tuned to  

any of the satellite frequencies by selection of the first local oscillator 

f r e  que ne y . 

The output f rom the second converter contains the two data 

The local oscillator frequencies can be de- 

The IF following the first converter must have a bandwidth 

Since the tones a r e  80-kHz apart  

2 . 4 . 2  System Users 

The main elements of the transceiver required by users  of the t raf-  

fic control system a r e  a modulator and 300-watt amplifier for transmitting 

traffic control data to  the ground station plus a phase-lock receiver and 

demodulator for  receiving traffic control data f rom the ground station. 

See Figure 4.  

gation signals f rom the satellites. Its coverage extends over the upper 

hemisphere so that tracking of the satellites is not required. 

cussion of the navigation antennas see Reference 1, Volume III. 

The antenna is the same one used for  reception of the navi- 

For  a dis- 

The transmitter portion contains a crystal  oscillator with *2 ppm 

A frequency synthesizer generates the two data tones spaced stability. 

80 kHz apar t  which a r e  selected for transmission through an  analog gate 

by the binary data stream to be transmitted. 

plied to  L band by a multiplier chain and amplified to 300 watts output 

power. 

antenna for  transmission to a satellite. 

The gate output is multi- 

The output of the power amplifier is fed to the diplexer and 

The transmitting frequency to  
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Figure 4. User Traffic Control Data Transceiver 

operate with a particular satellite i s  selected by choosing the proper pair 

of 80-kHz spaced data tone frequencies generated by the frequency 

synthesizer. 

The receiving portion consists of a simple phase lock loop receiver.  

The L-band preamplifier preceding the receiver can be the same one used 

with the navigation receiver.  Since the traffic control and navigation links 

a r e  close in frequency (see Table 1) , the bandwidth requirements on the 

preamplifier to pass the two R F  signals will not be excessive. 

amplifier output goes to the first mixer , which is driven by a local oscil- 

lator.  

crystal  oscillator in the transmitter o r  from a separate oscillator. 

receiver can be tuned to any of the satellite frequencies by selection of the 

local oscillator frequency. 

30 kHz, more than enough to pass the total frequency uncertainty (20 kHz) 
of the received L-band c a r r i e r  plus the narrowband data modulation (about 

1 kHz). The IF output goes to the c a r r i e r  phase lock loop, where the fre- 

quency uncertainty is removed. The loop has two manually selected noise 

bandwidths of 50 and 150 Hz for acquisition and tracking. The output f rom 

The pre - 

The local oscillator frequency can be derived from either the 

The 

The 50-MHz IF will have a bandwidth of 
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the loop phase detector contains the data tones of 256 and 512 Hz plus the 

AM sync information. 

2 .4.3 Satellite Transponder 

The satellite transponder used to relay the traffic control data be- 

tween users  and a ground station is shown in Figure 5. Tentative gain 

distributions of each stage are shown plus the DC power input required 

and the estimated size and weight of the unit. 

traffic control data the transponder i s  configured to handle the relay of 

the satellite tracking data f rom remote tracking stations to a central  

station, discussed further in Section 3 .  

translating repeater with individual IF channels for each received ca r r i e r .  

The three IF channels will handle simultaneously three received L-band 

c a r r i e r s ,  the two traffic control data c a r r i e r s  f rom the ground station 

In addition to relaying the 

The transponder is a frequency 

and user  

f rom the 

(full duplex operation), and the satellite tracking 

remote tracking sites. 

data c a r r i e r  

ro DESPUN ANTENNA 

30 db 

INPUT 
1567MHr 

20 db 

*TWO FILTERS SPACEDt40KHr 
ABOUT THE IF WITH BW'S 
OF 2OKHz EACH 

Figure 5. Satellite Transponder 

19 



The L-band despun antenna for  the navigation signal transmissions 

is also used with the transponder. 

multistage preamplifier with 5.0-db noise figure and 45-db gain. 

down converter (first mixer) converts the received signals to the center 

frequencies of the three channel IF amplifiers (30 to 40 MHz). Each IF 
channel has a maximum output determined by limiting action. The three 

IF outputs are linearly added by the summing amplifier. 

output levels of the three signals f rom the summing amplifier a r e  adjusted 

to obtain the proper division of the total output power from the TWT for the 

three transmitted c a r r i e r s .  

prevent an unusually strong received signal from capturing an improper 

share of the output power. 

intermodulation between the c a r r i e r s  is not a problem. 

The output of the diplexer goes to a 

The 

The relative 

Limiting in the IF channels is  required to 

I 
Since each channel is separately limited, 

The summing amplifier output is  converted to L band. The driver 

and TWT amplifier increase the power to the required level for  t rans-  

mission of the three received c a r r i e r s .  

TWT is 22 watts, 20 watts for the traffic control ca r r i e r  to use r s ,  1 watt 

for the traffic control ca r r i e r  to the ground station, and 1 watt for the 

satellite tracking data ca r r i e r .  

The total output power from the 

The local oscillator frequencies for the converters can be synthe- 

sized from either the stable crystal  oscillator used in the navigation sig- 

nal subsystem o r  from a separate stable crystal  oscillator (fi ppm). 

two conversion frequencies a r e  separated by 108 MHz so that received 

c a r r i e r s  a r e  translated down in frequency by 108 MHz before re t ransmis-  

sion. 

the crystal  oscillator is cancelled out except the portion corresponding to 

the 108-MHz translation. If a separate crystal  oscillator with stability of 

* 1 ppm is used, the corresponding transponder frequency translation 

e r r o r  is only *lo8 Hz. Therefore, the transponder makes virtually no 

contribution to the frequency uncertainty in the carriers arriving at  the 

ground station and users .  

and transmitted c a r r i e r s  is used to ease the diplexer requirements. Con- 

sequently, spectrum at both edges of the L-band region is required to  

implement the total system. 

The 

The translations a r e  implemented so  that any frequency e r r o r  in 

The fixed spread of 108 MHz between received 
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The bandwidths for the IF channels must be wide enough to accom- 

modate the modulation bandwidth plus the expected frequency uncertainty 

in the ca r r i e r s  arriving at the satellite. Fo r  the traffic control ground 

station and remote site tracking c a r r i e r s  the following assumptions can 

be made: 

1) The satellite doppler motion is small (less than 400 ft /sec).  

2)  The transponder down converter local oscillator frequency 
has  a stability of at least  *l ppm. 

3 )  The ground transmitters have ca r r i e r  stabilities of at least 
*O. 1 ppm. 

4) The modulation bandwidth of the c a r r i e r s  are about 1 kHz 
for the traffic control ground stations and 4 kHz for the 
remote site tracking stations. 

Consequently, the IF bandwidths for these two c a r r i e r s  would have to be 

at least 4 .5  and 7.5 kHz, respectively. However, to ease the IF filter 

design, a noise bandwidth of 20 kHz has been assumed for both of these 

channels. 

For user ca r r i e r s  the first two assumptions above also apply, to- 

gether with the following: 

1) The user  will have a maximum doppler velocity of 3000 f t /sec 
(assuming an SST aircraft) .  

2)  The user transmitter has  a stability of *2 ppm. 

3 )  The modulation consists of two narrowband signals (less 
than 1 kHz apart)  centered on the two L-band data tones 
spaced 80 kHz apart .  

Consequently, the IF bandwidth required is 80 kHz plus 20 kHz uncertainty 

or  100 kHz total. 

noise ratio. 

tered on one of the data tones and has  a noise bandwidth of 20 kHz . 
total noise bandwidth is then 40 instead of 100 kHz. 

However, 100 kHz would result in a poor IF signal-to- 

Each par t  is cen- Therefore, the IF is split into two parts.  

The 

The IF's of 30, 35, and 40 M-Iz correspond to a particular set of 

frequency assignments for a satellite (see Table 1). 
for other satellites, the transponder IF's a r e  tuned to  a different se t  of 

frequencies in steps of 500 kHz. F o r  example, the next satellite 

To change frequencies 
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transponder would have IF frequencies of 29.5, 34.5, and 39.5 MHz. If 

all satellite transponders do not require the ful l  communications capa- 

bility, it would be a simple matter  to  remove one of the IF'S. 

2 .5  LINK POWER BUDGETS 

Power budgets for  the traffic control links to and from the satellites 

a r e  given in this section. 

ous altitude and maximum slant range to the satellites. 

lite R F  power of 21 watts devoted t o  the traffic control (20 watts to  use r s  

and 1 watt to the ground station) and the ear th  coverage antenna ( t29 .2  
dbw EIRP), each satellite is capable of transmitting 200 bi ts /sec of data 

to  the ground station and 64 bi ts /sec of data to users .  These ra tes  a r e  

adequate, based on a four-satellite network, to handle the surveillance 

requirements for a North Atlantic air traffic control system in the 1975 

e r a .  Other data ra tes  with different antenna gains a r e  discussed at the 

end of the section. 

The space loss for each link assumes synchron- 

F o r  a total satel- 

2.5.  1 Ground-Station-to-Satellite Link 

The power budget for the uplink, shown in Table 3, provides a 
signal-to-noise ratio in the transponder IF of 28 db. Although no par -  

ticular value is  required for  this signal-to-noise ratio,  as it decreases 

in value the downlink degrades a s  the result of the effects of uplink noise. 

Degradation of the downlink by the uplink noise occurs from two effects. 

F i r s t ,  the noise takes a portion of the total available satellite transmitted 

power, thus reducing the effective transmitter power for the signal. 

Second, the uplink noise adds to the downlink noise increasing the overall 

noise spectral  density in the downlink receiver.  The magnitudes of these 
two effects a r e  given by 

where a and y a r e ,  respectively, the reduction in satellite transmitter 

power for the signal and the increase in downlink receiver noise spectral  

density expressed in decibels and where 
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(N/S)IF = transponder IF noise-to-signal power ratio 

Su, Sd = received signal levels on uplink and downlinks 

*uy @d = uplink and downlink receiver noise spectral  densities 

The degradation of the downlink (satellite -to-users) f rom noise on 

the uplink will be negligible due to  the strong received signal and IF sig- 
nal-to-noise ratio in the transponder. 

station transmitter and 26-db gain antenna (46 dbw EIRP) are more than 

adequate for this link. 

Therefore, a 100-watt ground 

Table 3. Ground Station-to-Satellite R F  Link 
Power Budget (fc = 1660 MHz) 

Parameter  Value 
-~ ~ 

Ground station transmitter power (100 watts) 

Circuit losses (diplexer etc. ) 

Antenna gain (5-ft dish) 

Space loss (22 000 nmi range) 

Satellite antenna gain (earth coverage) 

Circuit losses (diplexer etc .) 

Net transmission loss 

Received signal power 

Receiver noise spectral density (5.0 db N. F. ) 
IF noise bandwidth (20 kHz) 
IF noise power 

IF signal-to-noise ratio) 

t50.0 dbm 

-1.5 db 

t 2 6 . 5  db 

-189.0 db 

t16 .0  db 

-1.0 tlb 

149.0 db 

-99.0 dbm 

-169.0 dbm/Hz 

43.0 db 

-126.0 dbm 

t28.0 db 

2.5.2 Satellite -to-User Link 

The power budget for the satellite-user link is shown in Table 4. 
To relay the 64 bits/sec from the ground station 20 watts a r e  needed, 

This transmitter power is sufficient to permit, with 5 to 6 db signal m a r -  

gin acquisition and tracking of the ca r r i e r  by the two loop bandwidths in 

the user receiver and detection of the data with a bit error probability of 
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Table 4 .  Satellite-to-User RF  Link Power Budget (fc = 1552 MHz) 

Parameter Value 
~ - ~ 

Satellite transmitter power (20 watts)  

Power loss to uplink noise 

Circuit losses  (diplexer etc. ) 
Antenna gain (earth coverage) 

Space loss  (22 000 nmi  range) 

User antenna gain (three -element slot dipole) 

Circuit losses (diplexer etc. ) 
Net  transmission loss 

Received signal power 

Receiver noise spectral  density (5.0 db N. F. ) 
Uplink noise contribution 

Car r i e r  Acauisition and Tracking 

- 

t43.0 dbm 

0 db 

1.0 db 

16.0 db 

188.4 db 

3.0 db 

1.5 db 

171.9 db 

-128.9 dbm 

- 170.0 dbm/Hz 

0 db 

Modulation 10s s (mod. index = 1.7 radians) 

Received ca r r i e r  power 
8.0 db 

-136.9 dbm 

Acquisition Tracking 

Car r i e r  loop noise bandwidth (50 Hz) 17.0 db 
-148.2 dbm -153.0 db Car r i e r  loop noise power 

Car r i e r  loop SNR 11.3 db 16.1 db 

Required loop SNR 6.0 db 10.0 db 

Margin 5.3 db 6.1 db 

(150 Hz) 21.8 db 

Data Tones Detection (256 and 512 Hz) 

Modulation loss (mod. index = 1.6 radians ) 

Received data power -130.7 dbm 
Data noise bandwidth (64 bits /sec) 

Data noise power -152.0 dbm 

Data SNR 21.3 db 

Required SNR (Pe = AM sync tone) 16.0 db 

Margin 5.3 db 

1.8 db 

18.0 db 
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The required data signal-to-noise ratio (in a 64-Hz bandwidth) of 

An upper hemispherical coverage 16.0 db was derived in Section 2.3.2. 

antenna with 3-db gain is assumed for reception of the traffic control data. 

This antenna can be the three-element slot dipole antenna used for navi- 

gation and described in Reference 1, Volume III. 

turnstile antenna (also described in Volume 111) would require a reduction 

in data rate to 32 bits/sec.  

U s e  of the 0-db gain 

2.5.3 Users-to-Satellite Link 

The power budget for the user-satellite link is shown in Table 5. 

The user transmitter power of 300 watts and the 3-db gain slot dipole 

antenna result in a satellite transponder IF signal-to-noise ratio of 

8.3 db in each tone fi l ter .  

the uplink from the ground station, for which the IF signal-to-noise ratio 

Thus this uplink is considerably weaker than 

Table 5. User-to-Satellite RF Link Power Budget (fc = 1665 MHz) 

Parame te r Value 
~~~ ~ ~~ 

User transmitter power (300 watts) 

Circuit losses (diplexer , etc .  ) 

Antenna gain (slot dipole) 

Space loss (22,000 nmi range) 

Satellite antenna gain (earth coverage) 

Circuit losses  (diplexer, e tc . )  

Net transmission loss 

Received signal power 

Receiver noise spectral density (5.0 db N . F . )  

IF noise bandwidth (20 kHz each filter) 

IF noise power 

IF signal-to-noise ratio 

t54 8 dbm 

1.5 db 

3.0 db 

189.0 db 

16.0 db 

1.0 db 

172.5 db 

- 117.7 dbm 

-169.0 dbm/Hz 

43.0 db 

- 126.0 dbm 

8.3 db 

is 28 db. Consequently, some degradation of the downlink to the ground 

station will occur. As  seen in the downlink budget (Table 6) ,  the t rans-  

mitter power loss to  uplink noise is 1.1 db and the receiver noise spec- 

tral density is increased by 2.3 db. In computing the transmitter power 
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Table 6 .  Satellite -to-Ground-Station RF Link 
Power Budget (fc = 1547 MHz) 

Parame te r Value 

Satellite transmitter power ( 1  watt) 

Power loss to uplink noise 

Circuit 10s se s (diplexer , e tc . ) 
Antenna gain (earth coverage) 

Space loss  (22,000 nmi range) 

Ground antenna gain (5-ft dish) 

Ground circuit  losses (diplexer, e tc  . )  

Net  t ransmis  s ion lo s s 

Received signal power 

Receiver noise spectral  density (5.0 db N . F . )  
Uplink noise contribution 

Data Tones Detection (40 and 120 kHz) 

Received data power (total signal power) 

D a t a  filters noise bandwidth (20 kHz) 

Data noise power 

Data SNR 

Required SNR (Pe = l o m 5 ,  200 bi ts /sec)  

Margin 

t30.0 dbm 

1.1 db 

1.0 db 

16.0 db 

188.4 db 

26.0 db 

1.5 db 

150.0 db 

-120.0 dbm 

-170.0 dbm/Hz 

2.3 db 

- 120.0 dbm 

43.0 db 

-124.7 dbm 

4.7 db 

-1.0 db 

5.7 db 

loss ,  the effective IF signal-to-noise ratio is 5.3 db. The decrease of 

3 db results from the fact that the two 20-kHz data tone filters present 

an effective noise bandwidth to  the transmitter of 40 kHz. 

dations can be tolerated on the downlink because of the large antenna 

gain available at the ground station. 

2.5.4 Sate llite -to-Ground Station 

These degra- 

As shown in Table 6 ,  only 1 watt of satellite R F  power is required 

to relay the 200 bits /sec data f rom users  to the ground station because 

of the availability of the 26-db gain ground station antenna. 

margin of 5.7 db exists for  detecting the data with a l o m 5  bit e r r o r  
A power 
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probability. 

tone filter noise bandwidth) of - 1.0 db was derived in Section 2.3.1 

The required data s ignal-to-noise ratio (in the wideband 

2.5.5 Other Data Rates  

The data rates of 200 and 64 bi ts /sec will handle the estimated 

peak data requirements for surveillance in the North Atlantic ocean a rea  

in 1975. Using an ear th  coverage satellite antenna, these data rates a r e  

about the maximum that can be handled because of limitations on the out- 

put power from the solar a r r ay  of the NAVSTAR satellites (see Section 4). 

The required transmitter power of 22 watts total (90 watts DC input power) 

is near the maximum achievable RF output. 

creased, however, by increasing the satellite antenna gain. If the beam 

pattern i s  changed from ear th  coverage to North Atlantic ocean coverage 

about 5 to 7 db increase in gain can be realized making possible up to a 
five times increase in data ra te .  

combinations of user  and satellite antenna gains. 

the satellite transmitter power is 22 watts with 20 watts used for the ca r -  

r i e r  transmitted to  users  and 1 watt for the c a r r i e r  transmitted to the 

ground station (the remaining 1 watt is  used f o r  the satellite tracking data). 

The data ra tes  can be in- 

Table 7 shows data rates for different 

The data rates assume 

Table 7 .  Data Rates for Traffic Control 

(2) Data Rates 
U s e r  Antenna Gain Satellite Antenna Gain 

To Ground 
Station 

(bits /sec)  (bits /sec)  
To U s e r  (db 1 

,(i) Earth coverage (16 db) 32 2 00 

o(1) North Atlantic coverage 160 1000 
(23 db) 

3 Earth coverage (16 db) 64 200 

3 North Atlantic coverage 320 1000 
(23 db) 

("May require 500 to 600 watts user  transmitter power. 

(2)Assumes 20 watts satellite transmitter power to users  
to the ground station. 

and 1 watt 



3 .  SATELLITE TRACKING DATA LINKS 

Data links from remote NAVSTAR ground tracking s i tes  to  a central  

ground station a r e  used to  transmit satellite tracking information received 

by the remote si tes to  a central station where computations of satellite 

ephemeris and oscillator drift corrections a re  made. 

for these links is described in Volume IV, Section 4 . 9  of Reference 1 .  In 

that design, an L-band transponder on the NAVSTAR satellites was used 

to relay the tracking data. 

navigation transmitter with the navigation signal transmissions. Tracking 

data was relayed by the satellites between navigation signal transmissions.  
In the new design described here ,  this transponder is replaced by the 

transponder f o r  relaying traffic control data (see Section 2 . 4 . 3 ) .  

the transponder contains i ts  own TWT output t ransmit ter ,  the navigation 

transmitter is  no longer required to relay the tracking data. 

the tracking data relay link is available on a full-time bas is .  

The original design 

The transponder time-shared the 50-watt 

Since 

A s  a resul t ,  

3.1 SATELLITE ACCESS 

As with the traffic control data links, each satellite transponder i s  

tuned to a different transmit-receive pair of frequencies. Remote si tes 

tune their transmitter frequencies to  operate with a given satellite, and 

the central receiving site has a receiver for each satellite being used. 

Actually, a single satellite will have the capacity to  handle the data re- 
quirements from many remote si tes since the tracking data ra tes  required 

a r e  very small. Access to a single satellite by two o r  more  remote sites 

would be time-shared by those si tes.  Time synchronization between sites 

could be accomplished by the time information supplied with the navigation 

signal broadcasts; in any case synchronization is not a problem since 

large guard bands can be established between transmissions. 

In a four-satellite network for navigation and traffic control in the 

North Atlantic not more than two remote tracking sites a r e  required. A 
single satellite can handle the tracking data requirements of this network 

so that the other three satellites do not need to relay tracking data. The 
transponder in these satellites could have the third IF channel removed 

or  not functioning. The central station would have one receiver to  receive 

the time-shared transmissions f rom the two remote sites. A worldwide 
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network of satellites would require only about four satellites for the track- 

ing data relay,  located appropriatelyaround the globe to cover the various 

tracking s i tes .  It may be desirable for redundancy to have all of the net- 

work satellites capable of relaying the tracking data. The transponder IF 

channel for any satellite could then be activated or  deactivated via the 

command link to the satellites. 

3.2 MODULATION-DEMODULATION TECHNIQUE 

The modulation-demodulation technique for this link is coherent 

P S K ,  the most efficient technique and therefore that requiring the mini- 

mum satellite output power. Remote sites t ransmit  data at 32 bits/sec.  

The data is first modulated onto a 512-Hz square-wave subcarrier (actu- 

ally modulo-two added with the square wave) to remove the data modula- 

tion sidebands from the vicinity of the ca r r i e r .  

ca r r i e r  than biphase modulates the ca r r i e r  with a low deviation index in 

order to leave sufficient power in the ca r r i e r  to serve as a coherent 

reference for  detection of the data at the receiver.  

lation rate is then 1024 bits/sec even though the data rate is only 32 bits/  

sec.  An RF  bandwidth of about 4 kHz is sufficient to pass the modulation 

sidebands. 

The square-wave sub- 

The effective modu- 

The receiver acquires the coherent ca r r i e r  with a phase-lock loop 

and the data modulated square-wave appears at the output of the loop 

phase detector. 

from the noisy square -wave subcarr ier .  The division of power between 

the ca r r i e r  and the modulation is dependent on the modulation index. F o r  
2 2 biphase modulation cos /3 of the power remains in the carrier and sin /3 

of the power goes into the data, where 6 is the peak modulation index in 
radians. 

complete suppression of the c a r r i e r .  

half of a radian and the resulting division of power provides a 10-db 

signal-to-noise ratio in the ca r r i e r  loop (with a 100-Hz two-sided loop 

bandwidth), which should provide a clean reference for  the data. 

data power is sufficient to give a 
F o r  coherent P S K ,  a l o m 5  bit e r r o r  probability requires a signal energy 

per bit-to-noise spectral  density ratio of 9.4 db (Reference 5). 

A bit synchronizer reconstructs the 32 bit/sec s t ream 

Therefore, the index must  be l e s s  than 1.57 radians to prevent 

The actual index will be about one - 

The 

probability of information bit e r r o r .  
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The remote tracking sites will require a data modulator and 500- 

watt transmitter operating into a 12-db gain L-band antenna. The central  

receiving site will require an identical 12-db receiving antenna, a phase- 

lock receiver,  and a bit synchronizer operating on the 512-Hz square- 

wave subcarrier and data. 

3 . 3  POWER BUDGETS 

The power budgets for the R F  links from the remote sites to  the 

satellite and the satellite to the central receiving station a r e  shown in 

Tables 8 and 9. The 

uplink to the satellite is sufficiently strong so that degradation by uplink 

noise does not occur on the downlink. 

power to relay the 32 bits /sec of tracking data is 1 watt. 

The ear th  coverage satellite antenna is assumed. 

The required satellite transmitter 

Table 8. Remote Tracking Sites-to-Satellite R F  Link 
Power Budget (fc = 1650 MHz) 

Parameter  Value 

Remote site transmitter power (500 watts) 

Circuit losses (cable) 

Antenna gain 

Space loss (22,000 nmi) 

Satellite antenna gain (earth coverage) 

Circuit losses (diplexer , etc. ) 

Net  transmission loss 

Receiver signal power 

Receiver noise spectral density (5.0 db N . F . )  

IF noise bandwidth (20 kHz) 

IF noise power 

IF signal-to-noise ratio 

t57.0 dbm 

1.0 db 

12.0 db 

189.0 db 

16.0 db 

1.0 db 

163.0 db 

-106.0 dbm 

-169.0 dbm/Hz 

43.0 db 

-126 .O dbm 

20.0 db 
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Table 9. Satellite -to-Central Site R F  Link Power 
Budget (fc = 1542 MHz) 

Par ame te r Value 

Satellite transmitter power (1 watt) 

Power loss  to uplink noise 

Circuit losses  (diplexer, etc.) 

Antenna gain (earth coverage) 

Space loss  (22,000 nmi) 

Central site antenna gain 

Circuit losses (cable) 

Ne t  transmission loss 

Received signal power 

Receiver noise spectral  density (5.0 db N . F .  ) 

Uplink noise contribution 

Car r i e r  

Modulation loss (mod. index = 0.5 radian) 

Car r i e r  power 

Car r i e r  loop noise bandwidth (100 Hz) 

Car r i e r  loop noise power 

Car r i e r  loop SNR 

Required loop SNR 

Margin 

Data Subcarrier (512 Hz square -wave subcar r ie r )  

Modulation loss  (mod. index = 0.5 radian) 

Data power 

Data bandwidth (H = 32 bi ts /sec)  

Data noise power 

Data SNR 

Required SNR (Pe = 

Margin 

t30.0 dbrn 

0 db 

1.0 db 

16.0 db 

188.4 db 

12.0 db 

1.5 db 

162.9 db 

-132.9 dbm 

- 170.0 dbm/Hz 

0 db 

1.1 db 

-134.0 dbm 

20.0 db 

- 150.0 dbm 

t16.0 db 

t10.0 db 

6.0 db 

6.4 db 
-139.3 dbm 

15.0 db 

-155.0 dbm 

t15.7 db 

9.6 db 

6.1 db 
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4. SATELLITE DESIGN CHANGES 

The addition of traffic control capability to  the NAVSTAR satellites 

does not alter the basic design of the satellite as described in Volume IV 

of Reference 1 (Intelsat I11 modification). However, the weight of the 

satellite at launch increases by about 104 pounds, including 47 pounds of 

added propellant for the apogee motor.  Nevertheless, the Thor-Delta 

launch vehicle is still capable of launching the heavier satellite as a 200- 

pound weight margin existed in the previous design. 

The tracking data transponder will be replaced by the three-channel 

transponder which relays both the remote site tracking data and the full 

duplex traffic control data. 

ponder and diplexer weighs 16 pounds, the old 4 pounds. 

The added weight is 12 pounds; the new trans-  

The average DC power requirement for all of the satellite subsys- 

tems is 99 .1  watts, after subtracting the 3 watts required by the removed 

tracking data transponder. The new transponder requires 90 watts of DC 

power. Therefore, the solar a r r a y  output power must  be increased to  at 

least  199 watts (including 10 watts extra for  added converter losses)  to  

accommodate the new transponder on a continuous operating basis.  

present solar a r r a y  delivers 121.6 watts at beginning of life and 99.8 
watts minimum after five years  in orbit .  Array  capacity can be readily 

expanded to 125 watts minimum output after five years  since room exists 

on each solar panel to add two more  strings of solar cells. Array  capac- 

ity can be increased further to better than 200 watts output after five years 

by increasing the length of the panels and adding another six strings to 

each panel. 

creases by about 45 pounds, including provision for  larger  battery capacity. 

Some additional weight may be required fo r  modifications to the 

The 

With 200 watts output, the weight of the power subsystem in- 

satellite structure and certain subsystems such as positioning and orien- 

tation in order  to accommodate the longer solar panels and the extra 

weight. However, the Thor-Delta vehicle is capable of launching another 

100 pounds. This extra weight capability is more  than adequate to handle 

any additional changes to  the satellite design that may be necessary.  
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5. USER HARDWARE COSTS 

A cost of $12,400 is estimated for the traffic control transceiver 

based on a 300-watt output CW transmit ter  and a production run of 200 

units. 

is shown in Table 10. 

Including the preamplifier, the cost  is $13,300. The cost  basis 

In calculating the cost  of components other than semiconductors 

for  the receiver and t ransmit ter  sections, it is estimated that 80 per 

cent of the component will cost  an average of $0.50 each and the other 

20 per cent an average of $10 each. 

reached as follows: 

The totals in Table 10 were thus 

R ec e ive r see t ion : 263 (0.8)(0.50) = 105 
= 525 

63 0 
263 (0.2)( I O )  - 

Transmitter section: 129 (0.8)(0.50) = 52 
= 258 

3 10 
129 (0 .2) (  I O )  - 

The labor cost to assemble the receiver is taken as $6.26 p e r  Component 

and to assemble the t ransmit ter  $26 per component. Hence 

Receiver section: (309H6.26) = 1935 

Transmitter section: ( f 58 )(26 1 = 4110 

All  of these factors a re  based on TRW's experience in producing similar 

units. Al l  totals a re  rounded to $5. 

The 300-watt transmitter output is generated by two RCA tetrode 

tubes in cascade. These tubes a re  now special prototypes, but the sup- 

plier estimates that for  a production run of 200 units, the cost  including 

development would be about $2 100 per pair of tubes. 

preferable to a TWT for  use in an aircraf t  because of their  light weight. 

A TWT generating 300 watts will weigh well over 150 pounds including 

power supply, compared to 20 pounds for  the two tetrodes.  

These tubes a r e  

The R F  preamplifier cost  is not included in the total cost  since this 

unit is  par t  of the navigation receiver and was included in the costs for  

that receiver given in Reference I. 

i s  about $850. 

The cost  of the preamplifier by itself 
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Table 10. Cost of Transceiver 

Semiconductors Other Components 
No. Cost ($1 No. c o s t  ($) 

Receiver Section 

R F  amplifier 
Mixer -converter 
IF amplifier 
Phase detector 
Loop filter 
vco 
Tone f i l ters  
Linear detectors 
Differential amplifier 
Summing amplifier 
Bandpass filter 
Zero crossing detector 
Integrate and dump 
Decide logic 
Power supply 

Transmitter Section 

Gate 
Multiplier-driver 
Power supply 

5 
2 
7 
4 
1 
5 

2 
1 
1 
2 
1 
3 
2 

10 

46 
- 

3 
12 
14 

29 
L 

Exce ptional Components 

D iplexe r 
P r e  selector 
Selectable TCXO 
TCVXO 
Frequency synthesizer 
Power amplifier (300 w) 
Blowers 

Total - 
Receiver semiconductors 
Other receiver components 
Receiver assembly labor 
T r ansmitte r semiconductor s 
Other transmitter components 
Transmitter assembly labor 
Exceptional components 

290 
25 
3 1  
25 
10 
20 

4 
8 
8 

10 
8 

20 
16 
20 

495 
- 

45 
300 
110 

455 

60 
3 

77 
8 
6 

25 
14 
8 
4 
4 

10 

12 
4 

28 - - 
263 630 

9 
96 
24 - 7 

129 3 10 

$95 
30  

800 
300 

1100 
2 100 

7 5  

$4500 

$4 95 
630 

1935 
455 
3 10 

41 10 
4500 

$12,435 
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